Cannon-Thurston maps for hyperbolic group extensions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cannon–thurston Maps for Hyperbolic Free Group Extensions

This paper gives a detailed analysis of the Cannon–Thurston maps associated to a general class of hyperbolic free group extensions. Let F denote a free groups of finite rank at least 3 and consider a convex cocompact subgroup Γ ≤ Out(F), i.e. one for which the orbit map from Γ into the free factor complex of F is a quasi-isometric embedding. The subgroup Γ determines an extension EΓ of F, and t...

متن کامل

Relative Hyperbolic Extensions of Groups and Cannon-thurston Maps

Let 1 → (K, K1) → (G, NG(K1)) → (Q, Q1) → 1 be a short exact sequence of pairs of finitely generated groups with K strongly hyperbolic relative to the subgroup K1. Let relative hyperbolic boundary of K with respect to K1 contains atleast three distinct parabolic end points and for all g ∈ G there exists k ∈ K such that gK1g −1 = kK1k , then we prove that there exists a quasi-isometric section s...

متن کامل

Cannon–thurston Maps for Kleinian Groups

We show that Cannon–Thurston maps exist for degenerate free groups without parabolics, that is, for handlebody groups. Combining these techniques with earlier work proving the existence of Cannon–Thurston maps for surface groups, we show that Cannon–Thurston maps exist for arbitrary finitely generated Kleinian groups without parabolics, proving conjectures of Thurston and McMullen. We also show...

متن کامل

Cannon–thurston Maps Do Not Always Exist

We construct a hyperbolic group with a hyperbolic subgroup for which inclusion does not induce a continuous map of the boundaries. 2010 Mathematics Subject Classification: 20F67

متن کامل

Ending Laminations and Cannon-Thurston Maps

In earlier work, we had shown that Cannon-Thurston maps exist for Kleinian surface groups. In this paper we prove that pre-images of points are precisely end-points of leaves of the ending lamination whenever the Cannon-Thurston map is not one-to-one. In particular, the Cannon-Thurston map is finite-to-one. This completes the proof of the conjectural picture of Cannon-Thurston maps. In conjunct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1998

ISSN: 0040-9383

DOI: 10.1016/s0040-9383(97)00036-0